Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations.
نویسندگان
چکیده
Magnesium (Mg) and its alloys have been intensively studied as biodegradable implant materials, where their mechanical properties make them attractive candidates for orthopaedic applications. There are several commonly used in vitro tests, from simple mass loss experiments to more complex electrochemical methods, which provide information on the biocorrosion rates and mechanisms. The various methods each have their own unique benefits and limitations. Inappropriate test setup or interpretation of in vitro results creates the potential for flawed justification of subsequent in vivo experiments. It is therefore crucial to fully understand the correct usages of each experiment and the factors that need to be considered before drawing conclusions. This paper aims to elucidate the main benefits and limitations for each of the major in vitro methodologies that are used in examining the biodegradation behaviour of Mg and its alloys.
منابع مشابه
Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance
Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the...
متن کاملThe Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper
In the last decade, iron and magnesium, both pure and alloyed, have been extensively studied as potential biodegradable metals for medical applications. However, broad experience with these material systems has uncovered critical limitations in terms of their suitability for clinical applications. Recently, zinc and zinc-based alloys have been proposed as new additions to the list of degradable...
متن کاملSurface modification of biodegradable magnesium and its alloys for biomedical applications
Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues he...
متن کاملThe Potential of Magnesium Alloys as Bioabsorbable / Biodegradable Implants for Biomedical Applications
The potential of magnesium alloys as bioabsorbable / biodegradable implants for biomedical applications has been extensively studied as emerging direction. This paper gives a review of current topics in this field. Research activities related to biomedical magnesium alloys have been pursued in two main directions, orthopedic and cardiovascular implants, by investigating different aspects of all...
متن کاملElectrodeposition of Nano Hydroxyapatite Coating on Biodegradable Mg-Zn Scaffold (TECHNICAL NOTE)
Magnesium has been recently recognized as a biodegradation metal for bone substitute application. In the present work, porous magnesium-zinc scaffolds were prepared by powder metallurgical process and nano hydroxyapatite (HAP) coating on the Mg-3Zn (wt.%) scaffold was prepared by pulse electrodeposition and alkali treatment processes to improve the corrosion resistance of scaffold. The results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2012